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MODEL OF A NONSTATIONARY ISOTROPIC 
TURBULENT FLOW OF A LIQUID WITH POLYMER 
ADDITIVES 

V. A. Sosinovich and V. A. Babenko UDC 532.5:532.135 

A closed equation is investigated for a function that describes the evolution in time of the energy distribution 
of turbulent velocity pulsations over different length scales in an isotropic flow of dilute solutions of linear 
high-molecular-weight polymers. A program for a numerical solution of this equation is developed. Results 
are obtained for the time variation of turbulent pulsation energy, dissipation rate, efficiency of polymer 
additives, and other characteristics for different Reynolds numbers and different concentrations of the 
polymer additives. The results obtained indicate decreased dissipation of the turbulent flow and are in good 
qualitative agreement with existing experimental facts. 

Introduction. In [1 ] a closed equation was obtained for the function Pt(r) that describes the energy 

distribution of turbulent velocity pulsations over different scales of length in an isotropic flow of dilute solutions of 

linear high-molecular-weight polymers. The influence of small polymer additions on the turbulent flow structure 

is taken into account by introducing the additional term I(r, t) in the equation for Pt(r). This term is completely 

determined in terms of the sought function Pt(r) and parameters of the solution. In deriving an expression for I(r, 
t) use was made of the concept of a mechanism of interaction of polymer molecules and turbulence, proposed in 

[2, 3 ]. This mechanism, in essence, reduces to the fact that the solution viscosity increases strongly at points of 

the flow where tensile deformation occurs. 

In [4 ] the equation for the function Pt(r) was solved in the stationary case. The stationary solution became 

possible upon introducing into the equation for Pt(r) a term that models the pumping of turbulent energy. The 

solution for the stationary case made it possible to demonstrate rather easily the main qualitative effects of the 

interaction of polymer molecules and turbulence. 

The aim of this work is to obtain a numerical solution and analyze the obtained results in a nonstationary 

case, i.e., to study the influence of polymer additives on the character of evolution of the turbulent flow structure 
of the liquid. 

1. Closed Nonstationary Equation for the Function Pt(r). The equation for the function Pt(r) is given by 

formulas (11), (12)-(26) in [1 ]. Here we rewrite it in dimensionless form, dropping the term that describes energy 

pumping into the flow, since in the subsequent discussion we will solve a nonstationary problem of the structure 

evolution for a turbulent velocity pulsation field from a prescribed initial state, described by the function Po(r), 
without pumping of turbulent energy. The equation in dimensionless variables appears as 

OPt(P~) - 0 { 1 2 0 t '  Op Re o + 27 Pf ~PPt(P) dP] ( O + 4 )  pt(P) - n {G(P'  t) l pt(P)] } Op Re 0 /9 (1) 

We write the initial and boundary conditions as 

Pt (t 9) t=O = 2,o exp ( -  p2), Pt (t 9) p=O = O, Pt (t9)[p=~ = O . (2) 
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In (1) and (2) use is made of the notation 

r 
P - Lo , Pt (P) - 

LoPt (r/~Lo) (3) 
2 

q (0) 

t' = L0 ' Reo = v 

Here t denotes the dimensionless time and n -- vs/v  denotes the ratio of the viscosity factors of the solution at points 

of molecular tension and the solvent. This number  is proportional to the concentration of polymer molecules Co: n 
-CoN,  where N can be assumed approximately equal to the number of monomer links in a polymer molecule [2, 

3 ]. In studying a polymer of one specific type at constant temperature we can consider the number  n as the polymer 

additive concentration in water. 

The function Gtp, t) is interpreted by the followingformulas: 

G (p,  t) -- 10 -2  [I0 (C~ I1 (~ + I1 (a)l) I0 (092) 1' (5) 

a~(1,2) = ~ (P,  t) = 5/32 Re 3 e (t) (1 + Y ( p ,  t ) ) ,  (6) 

3 = T / 3 0 ,  30 = L ~ / v .  (7) 

Here T is the characteristic relaxation time for the polymer molecule, and 3 o is the characteristic time of 

viscous dissipation on the length scale L 0. 

The dissipation rate e(t) is determined by the formula 

10 lim O p  (8) 
( 0  = p-,o op (P ) " 

The function Y(p, t) is determined from the relation 

0 ( o 1 / 0  Y (p ,  t) = --~ Pt - ~  Pt (P) p=0" (9) 

Expressions for Ik(coi), k = 0, 1, i = 1, 2 are given by formulas (24)-(26) in [1 ]. It is also noted there that 

the form of expression (6) for W(l,2)(p, t) is va l idwhen  a change in the number Re0 is due to a change in the 

characteristic velocity 2V~-~q(0) of pulsations at a constant value of the length scale L0. 

We note that the value of the function Y(p, t) at any values of the variables does not exceed unity. The 

quantity e (t) at any value of t is also limited by some maximum value that can be calculated by solving the equation 

for the case of no polymer additives. Therefore  for the prescribed value of the parameter  e and for each value of 

Re we can calculate the function G(p, t) for values of Y from the interval [ 0 -1  ] and for values of e(t) from the 

region of values of this quantity and then use it in solving Eq. (1), choosing values of this function that correspond 

to the quantities Y(p, t) and e(t) at each specific point p, t. By choosing specific values of the quantities T, v, L o 

(T -- 10 -3 sec, v = 10 -6 m2/sec, L 0 = 10 -3 m) and thus determining the value 3 = 10 -3 we can calculate the function 

Gtp, t) at different values of the number  Re o. The form of this function is shown in [1 ] for some values of Reo. 

2. Numerical Solution of the Equation for Pt(P). To solve Eq, (I) numerically, it is convenient to introduce 

additional notation and perform a series of transformations. 

We denote 
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Ft = Re----o + 27 dp = d; (10) 
0 0 

where we assumed Pt = Tt(p), and we write the initial equation (1) together with the initial and boundary conditions 

as a system of differential equations in partial derivatives 

OP t 0 { ( OP t 4P t 
, = - -  F t + 

ot op op p 

n 

Reo P 

(11) 

OF t 
Op - 27 ~PPt,  (12) 

OSt (13) 
-~- = Pt 

with the boundary conditions at p = 0 

2 = 0 (14) Pt p = O = 0 '  Ft lp=O-Re  0, St p=O " 

To obtain the conditions for S t at p = ~, we integrate Eq. (11) over p from 0 to co: 

P Oq t 10 OP t (15) d ~ Ptdp - _ __[ ~ 0 t d p = _ ~  
o Ot o or' Re o Op'p=o 

where by definition 

qt = ~ Pt dp. 
0 

The latter expression makes it possible to formulate the boundary condition at p = ~: 

St p=o = qt" (16) 

Thus, to find the sought functions Pt, Ft, St, and qt, we need to solve the sYstem of equations in partial derivatives 

(11)-(13) with the boundary conditions (14), (16) as well as the ordinary differential equation (15) with the initial 

condition qt I t=o = 1. 
We integrate Eq. (11) over p from p to Qo. Taking into account that OPt/Of = (O/Ot')(OSt/Op) = 

= (O/Op)(OSt/Ot'), we obtain 

os, (opt pt ] 
-Ft - - + 4 - -  eP + - 

Ot' ~ Op p ) Re o p dt' 
(17) 

We transform the system of equations (17), (12), (13), and (15) by introducing the normalized dependent 

variables P = Ptl qt, S = St l qt' F =FtReo, the time t -- t ' /Reo, and the dimensionless parameter of the dissipation 
rate f0 = lO(OP/Op)fp=o = 2/3 .Reo(e/qt). We obtain the following system with the boundary and initial conditions: 

OF OS dqt 
~ - = 2 7  V~q t R e  o ~ p P ,  - # ~ = P ,  dt = - f ~  (18) 
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Pip=0 = 0 ,  Flp= 0 = 2,  Sip=0 = 0,  Sip= ~ = 1, qlt=o = 1. 

To transform the system of equations (18) to a form convenient for calculations, we introduce, instead of 
the probability density function P, the related function 

P 
~o- OP ' (19) 

P-b-h- p=o 

as well as the "energy" time T, which is liked by a differential relationship to the time t': 

]'oat'= aT. (20) 

This variable is referred to as the "energy" time since the turbulence energy decays exponentially with this time. 
We write the system of equations finally as 

qt = exp ( -  ?'), (21) 

F(pO-O-~-+5~o]-nC~-10( l -S) -100- i f -S=0,  
~ ) o p  oF 

(22) 

OF _ 2y V~q t Re o p v ~  (23) 
Op 

OS (24) 
-b~ = P ,  

~176 - 0 (2 s )  
0p , 

~Olp= o =  1, Flp= 0 = 2 ,  S i p = 0 = 0 ,  Slp=~= 1, q l t = o =  1. (26) 

The general scheme for a numerical solution to (21)-(26) consists in calculating qt by formula (21) for each 
new time step AFand then solving the nonlinear boundary-value problem for p (22)-(26) for the known qt..on in 

the new step with replacement of the time derivative by its finite-difference approximation OS/O?'-~ (S-S)/A~, 
where S(p) is the value of S in the previous step in time T. The transition from the energy time to the real time t 

occurs in the subsequent integration of Eq. (20). 

The initial distribution P over the spatial scale was prescribed as 

Pit=0 = 2p exp ( -  pZ). (27) 

For the functions ~o(0, p) ,  F(0,  p) ,  and S(0, p) we obtain respectively ~o(0, p) = exp (_p2), S(0, p) = 
1 - exp(-p2),  F(0, p) = 2 + 2~ / 2yRe o (1 - Vrl - S). It is easy to calculate the initial value for the constant fo: 

f0 = 20.  

The nonlinear boundary-value problem (22)-(26) was solved numerically by the iterative process of solving 

successive linear two-point boundary-value problems. We represent 

~o* S* * ~o = + ~o , F = F* + cSF, S =  + ~ S ,  s  

and linearize Eqs. (22)-(24) according to Newton. In linearizing we take into account that the function that 

descr ibes  the inf luence  of polymer  addit ives G d e p e n d s  on OP/Op and OP/Oplp= O. Denot ing  y = 

1006 



1.5 

73 

9.5- 

I ! ! 
I 

fee o =100 

0 0.5- 1.0 1,3- L0 2~5 r 
Fig. 1. Shape and evolution of the function Pt(r) vs concentration of polymer 

additives at Re0 = 100: 1) n = O, t = O; 2) 0 and 1; 3) 0 and 2; 4) 10 and 1; 

5) 10 and 2; 6) 100 and 1; 7) 100 and 2. 

(OP/Op)/(OP/Op Ip= 0, we write G = G* + 6G = G* + (OG/Oy)6y + (OG/Ofo)6fo. The linearization procedure is 

performed in a s tandard manner,  and therefore we do not derive or present the linearized equations. The algebraic 

boundary-value problem for the corrections 6~o, 3F, 6S, and 6f0 is solved by the two-point matrix run method, 

described in [5 ]. It is convenient to assess the convergence of the iteration in the nonlinearity by the value of 

dissipative losses. The iterations came to a close when Afo/fo < 0.0005. 

We proceed to a description of the results of a numerical calculation. 

3. Results of the Numerical Solution of the Equation for Pt(P). Figure 1 shows the shape of the function 

Pt(P) for different values of the concentration n and different values of t for Reo = 100. By comparing curves 2, 4, 

and 6 it can be seen that the reaction of the distribution Pt(P) to the appearance of the additives consists in a 

significant change in the shape of this function. The distribution becomes sharper in the region of small length 

scales. This behavior of the function Pt(P) is due to the fact that polymer additives primariiy decrease the intensity 

of the smallest-scale pulsations, which relate to the dissipative spectral region. In this case the energy transfer  for 

larger length scales has not yet deviated from the case of no additives, and therefore there is blocking of the 

spectrum with the energy of pulsations with larger length scales than the dissipative ones. This leads to a distinct 

sharpening of the shape of the function Pt(P). A further increase in the polymer additive concentration decreases 

the intensity of pulsations with large length scales, which causes a decrease in turbulent transfer over the entire 

spectrum, which results in a shift of the distribution Pt(P) in the region of large length scales. If we managed to 

confirm experimentally the above character of the shape of Pt(P) as a function of the concentration this would be 

direct evidence for the adequacy of the proposed theory and the physical mechanism of the interaction of polymer 

additives and turbulence. 

The  difference in the character of evolution of the function Pt(P) in the absence of small polymer additions 

and for different values of concentration is demonstrated by comparing the groups of curves (1, 2, 3), (4, 5), and 

(6, 7), which correspond to different n values. It can be seen that the process of splitting of turbulent vortices in 

a liquid with polymer additives slows down markedly compared to the case of no additives. A comparison of curves 

2, 3 and 5, 6 shows that in the time interval from t = 1 to t = 2 the reduction in size of the length scales for turbulent 

velocity pulsations persists in the flow with polymer additives, which characterizes the initial nonequilibrium period 

of development of the spectrum. At the same time in the absence of polymer additives this process is already 

completed and there is a slow evolution of the equilibrium spectrum. 
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Fig. 2. Turbulent energy evolution for different values of the concentration n 

and different values of the polymer relaxation time r: 1) n = 0, T = 10 -3 ," 2) 

10 and 10-3; 3) 100 and 10-3; 4) 10 and 2- 10-3; 5) 10 and 5.10 -3 . 
t 

TABLE 1. Evolution of the Function Pt(O) in Time 

T 

0.2 

0.6 

1.0 

2.0 

3.0 

4.0 

0 

8.19 

11.0 

9.72 

5.51 

3.30 

2.21 

7.0 

9.04 

8.88 

6.36 

3.38 

2.20 

101 

5.34 

5.84 

5.78 

5.20 

4.31 

3.04 

n 

10 2 

4.16 

4.37 

4.32 

4.03 

3.61 

3.00 

10 3 

3.55 

3.67 

3.63 

3.43 

3.13 

2.72 

10 4 

3.19 

3.29 

3.26 

3.09 

2.85 

2.52 

10 5 

3.31 

3.47 

3.46 

3.30 

3.05 

2.67 

TABLE 2. Dissipation Rate vs Reo and n 

100 

t 
Re0 2 

100 

200 

800 

100 

200 

800 

100 

200 

800 

0 1 

2 10.6 

2 20.5 

2 72.5 

2 9.09 

2 9.05 

2 25.1 

2 4.33 

2 3.23 

2 2.93 

6.77 

13.5 

56.5 

7.76 

10.4 

51.3 

4.35 

3.41 

3.09 

3 4 5 

4.87 

9.55 

38.9 

5.70 

10.1 

47.5 

4.26 

3.45 

3.11 

3.89 

7.53 

30.0 

4.14 

9.64 

42.1 

4.14 

3.45 

3.11 

2.35 

4.40 

16,6 

2.31 

6.81 

18.5 

3.49 

3.40 

3.09 

We can see the effect of small polymer additions on the turbulence energy by comparing the evolution of 

turbulent energy for different polymer concentration values (Fig. 2). 
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Fig. 3. D i s s ipa t i on  r a t e  (a) and  p o l y m e r  add i t ive  e f f i c i en cy  (b) vs 

concentration fot different values of the turbulent flow energy: 1) q' = 0.8; 2) 

0.6; 3) 0.4; 4) 0.2; 5) d--dmax. 

It can be seen from Fig. 2 that in the presence of additives the process of energy decay drags on distinctly 

prolonged. For example, 80% of the initial energy level for Re0 = 100 dissipates in t = 2 at n = 0 and in t = 3 at n 

= 100. 

The effect of a decrease in the dissipation of the flow is clearly demonstrated by time dependences of the 
t 

function Pt(O) = lim n (O/Op)Pt(P), related to the dissipation rate by formula (8), that are calculated for different 
p o 

values of the polymer concentration. It can be seen from Table 1 that the maximum values of dissipation rate may 

differ by nearly a factor of two for the cases n = 0 and n -- 10. We call attention to the fact that at very large values 

of polymer concentration the dissipation rate begins to increase (P'(0) is larger at n = 105 than at n = 104). 

The results of calculating the evolution of the dissipation rate for various Reo(see Table 2) indicate that 

polymer additives decrease the maximum rate of energy dissipation by a factor of 1 . 4 - 2  and shift the position of 

the dissipation rate maximum to the right by At = 1.2. The latter circumstance points once again to the slowing 

down of mixing in a turbulent  flow with additives. 

Figure 3a shows P ' (0)  as a function of polymer concentration for different energy levels. It can be seen 

that for certain values of n P '  (0) decreases with increasing n in all cases; however, at large values of n we observe 

an increase in it. 

The  effect of a decrease in dissipation is demonstrated most clearly in studying the efficiency of polymer 

additives. The efficiency is determined as the ratio of the difference of the energy dissipated in the flow with 

additives and with no additives to the energy dissipated in the flow with no additives: 

A ( n  t ) =  [ 1 - q ( t ,  0 ) ] -  [ 1 - q ( t ,  n ) ] _ q ( t ,  n ) - q ( t ,  0) (28) 
' [1  - q ( t ,  0 )  ] - 1 - q ( t ,  0 )  

A calculation (see Table 3) of the evolution of efficiency at different Reo shows that the efficiency increases 

as the flow decreases in scale and then drops to zero. The maximum value of A (at approximately F= 0.1) attains 

a value of 0.9 at n = 100. Noticeably high efficiency appears at Reo - 7 5 .  

The results of calculating A(Reo) (Table 4) show that with increasing Reo the efficiency first increases and 

at large Re o values it begins to decrease, which is associated with the "viscous" origin of the effect. 

The evolution of efficiency as a function of the polymer additive concentration (Table 5) indicates that the 

efficiency increases as the concentration increases; however, at very large values of n we observe a decrease in it. 

The  above effect of decreasing efficiency with an increase in polymer additive concentration is also observed 

experimentally [6 ]. It is traditionally explained merely by an increase in the ordinary viscosity of the solution. 
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TABLE 3. Dependence of the Efficiency A(t) for Different n and Re0 

n Reo 0.1 0.2 0.4 0.6 1.0 2.0 3.0 

100 

100 

200 

800 

100 

200 

800 

0.002 

0.380 

0.641 

0.117 

0.676 

0.862 

0.047 

0.480 

0.561 

0.331 

0.706 

0.805 

0.115 

0.430 

0.423 

0.413 

0.604 

0.662 

0.115 

0.357 

0.322 

0.368 

0.500 

0.540 

0.080 

0.240 

0.188 

0.007 

0.067 

0.098 

0.257 0.087 

0.338 0.119 

0.356 0.119 

0 

0.013 

0.001 

0.025 

0.027 

0.032 

TABLE 4. Dependence ofthe Efficiency A(Re0) for Different n 

Re0 

n 100 200 300 600 1000 

1 0.06 0.48 0.57 0.56 0.51 

100 0.35 0.70 0.75 0.79 0.78 

TABLE 5. Evolution ofthe Efficiency A(~ n)for  Different Concentrations 

'" n 

T 

0.4 

0.8 

1.0 

1.2 

1.4 

1.8 

2.5 

5.0 

0.03 

0.12 

0.11 

0.09 

0.07 

0.04 

0.01 

0 

101 

0.11 

0.29 

0.29 

0.28 

0.26 

0.21 

0.13 

0.02 

10 3 

0.29 

0.47 

0.48 

0.47 

0.45 

0.40 

0.32 

0.13 

104 

0.34 

0.52 

0.52 

0.51 

0.49 

0.44 

0.36 

0.16 

105 

0.35 

0.51 

0.51 

0.50 

0.48 

0.43 

0.34 

0.14 

This model takes no account of the increase in the ordinary viscosity of the solution with an increase in 

concentration. The effect of decreasing efficiency at large values of concentration of polymer additives is apparently 

associated with restructuring of the pulsation spectrum. 
Figure 3b shows A as a function of n. Different curves correspond to different fixed levels of turbulent 

energy. The figure illustrates the saturating character of the effect of polymer additives on turbulence. At large 

values of concentration A values do not increase. At very large values of n we observe a decrease in efficiency [6 ]. 

The solid curve corresponds to the dependence A(n) at energy values, at which maximum values of efficiency are 

realized. 
Figure 4 shows the evolution of the Reynolds number Re(t), the time macroscale T(t), and the length 

macroscale L(t). 
The evolution of Re(t), determined by the formula 

Re (t) = 

2 

shows that the polymer additives slow down the decrease in the number Re(t). This is associated with slowing 

down of the transfer process under the influence of polymer additives. 
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Fig. 4. Influence of polymer additives on the evolution of the Reynolds 

number Re(t) ,  the time macroscale T(t), and the length macroscale L(t) ; solid 

curves) n = 0; dashed curves) n = 100. 

The evolution of the time macroscale 

T( t )  = L(O 

demonstrates a reduction in this value by polymer additives at each instant, though the general character  of the 

dependence (the increase in T(t) with time) persists at all values of the concentration n. As a consequence of the 

decreased rate of turbulent energy dissipation under  the influence of polymer additives the rate of growth of the 

time macroscale slows down. 

The evolution of the length macroscale, determined by the formula " 

1 7 rPt(r) dr, L(t) = ~  o 

shows that the process of turbulent mixing slows down in the presence of polymer additives�9 The  nonequilibrium 

portion (i.e., the portion where the macroscale decreases) is prolonged. The shape of the function Pt(r) is such that 

with a strong increase in the microscale and the corresponding decrease in the dissipation rate with increasing n 

the macroscale L(t), determined  by large vortices, decreases. This is a "macroscopic" manifes ta t ion of the 

aforementioned effect of sharpening of the function Pt(r) under the influence of polymer additives. 

An interesting and important problem is the study of the rate of mixing as a function of ~ which can be 

changed both by the changing the type of polymer molecules and by changing the initial length scale of the turbulent 

velocity field (see formula (7) for ~). Figure 2 shows the evolution of turbulent energy for n = 10, Re0 = 100, and 

for different values of 3. It can be seen from the figure that as ~ increases, the process of turbulent energy decay 

slows down sharply. We can use this rate of turbulent energy decay as a function of r to control the rate of mixing. 

Calculation of the efficiency as a function of T for different values of Re0 leads to the conclusion that the 

situation when T is large is the most efficient. 

A study of the evolution of efficiency as a function of �9 shows that as T increases at a fixed Re, saturation 

arises, depending on A(z). With an increase in Re the maximum efficiency may attain values of about 0.85. 
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Conclusions. We solved numerically the nonstationary form of the equation, obtained in [1 ], for the 

function Pt(r), which describes the evolution in time of the distribution of velocity pulsation energy in an isotropic 

turbulent flow of dilute linear high-molecular-weight polymers. Results of the numerical solution show that additives 

lead to a decreased slope of the function Pt(r) at small values of r and to an increased maximum value of this 

function. The shape of the function changes so that the microscale of turbulent pulsations increases and the 

macroscale decreases, i.e., we observe the effect of sharpening of the distribution Pt(r). The decreased slope of 

Pt(r) at small values of r points to decreased dissipation of turbulence under the influence of the additives. A shift 

of the distribution maximum to the region of large length scales indicates slowed processes of turbulent transfer in 

a liquid flow with the additives. 

An investigation of the evolution of turbulent pulsation energy as a function of the polymer additive 

concentration shows that half the turbulent energy dissipates more slowly by a factor of 2.5 and the 2 ~  energy 

level with respect to the initial one is attained in a time 100 times greater in a flow with polymer additives than in 

a flow with no additives. The maximum value of the dissipation rate is smaller by a factor of 2 in a flow with 

additives than in a flow with no additives. 

It is shown that noticeably high values of the polymer additive efficiency begin to be manifested at initial 

Reynolds numbers of about 75 and maximum values reach 0.9. We also note an important feature of the efficiency 

as a function of the Reynolds number. It is found that with an increase in the Reynolds number the efficiency first 

increases and then begins to decrease. This feature is confirmed experimentally [2, 6 ] and, as has been shown in 

[4 ], is associated with the "viscous" origin of the polymer term in Eq. (1) for Pt(r). This dependence A(Re) is the 

most direct evidence for the validity of the mechanism of interaction of turbulence with polymer additives, used as 

the basis of the theory. 

An analysis of the results of a numerical calculation of the efficiency A for different values of the polymer 

additive concentration n shows that the usual tendency of increase in A with increase in n at large n values gives 

way to the opposite one. This result is not associated with increased ordinary viscosity since the ordinary viscosity 

as a function of polymer additive concentration is not taken into account in this model, and it is more likely a 

consequence of the complex interaction of turbulence and polymer additives, which, at large concentrations, leads 

to increased turbulent transfer over the spectrum of length scales. This effect, known from experiment, has no 

theoretically substantiated explanation, as noted in [6 ]. 

It is shown that by varying the value of �9 (and this variation can be provided both by choosing the type of 

polymer with different values of relaxation time and by varying the length scale of turbulence) we can control the 

rate of turbulent mixing and the efficiency regime. 

N O T A T I O N  

Pt(r), function that describes the distribution of turbulent pulsation energy over different length scales, 

Re0, initial Reynolds number; LO, initial length macroscale of turbulent pulsations; T, characteristic relaxation time 

for a turbulent molecule; 3, dimensionless relaxation time for polymer molecules; e(t), rate of turbulent energy 

dissipation; q (t), ratio of the energy of turbulent velocity pulsations to the initial value; A (n, t), efficiency of polymer 

additives; n = Vs/V; Vs, solution viscosity coefficient at points where molecular tension is realized; v, solvent viscosity 

coefficient; ~, energy time. 
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